Planning accelerated reliability tests for mission-oriented systems subject to degradation and shocks
Xiujie Zhao,
Kangzhe He,
Way Kuo and
Min Xie
IISE Transactions, 2020, vol. 52, issue 1, 91-103
Abstract:
This article presents a novel accelerated reliability testing framework for mission-oriented systems. The system to be tested is assumed to suffer from cumulative degradation and traumatic shocks with increasing intensity. We propose a new optimality criterion that minimizes the asymptotic variance of the predicted reliability evaluated at the mission’s end time. Two usage scenarios are considered in this study: one is to assume that systems are brand new at the start of the mission and the other is that systems are randomly selected from used ones under pre-determined policies. Optimal test plans for both scenarios are obtained via delta methods by utilizing the Fisher information. The global optimality of test plans is verified using general equivalence theorems. A revisited example of a carbon-film resistor is presented to illustrate the efficiency and robustness of optimal test plans for both new and randomly aged systems. The result shows that the test plan tends to explore more on lower stress levels for randomly aged systems. Furthermore, we conduct simulation studies and explore compromise test plans for the example.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1567958 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:1:p:91-103
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2019.1567958
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().