Data analysis and resource allocation in Bayesian selective accelerated reliability growth
Cesar Ruiz,
Mohammadhossein Heydari,
Kelly M. Sullivan,
Haitao Liao and
Ed Pohl
IISE Transactions, 2020, vol. 52, issue 3, 301-320
Abstract:
The rapid pace of technology advancement has resulted in increasingly complex systems with more potential failure modes. However, it is quite common that multiple key components of such a system may be developed, tested and improved independently during product development. Without taking a holistic approach to system reliability improvement, a significant amount of time and resources may be wasted on over-design of some components, which can be otherwise used for strengthening other under-designed components. The technical challenge is more prominent when accelerated testing is utilized in a reliability growth program in hopes of shortening the system development cycle. To overcome limitations of the traditional reliability growth method using the Crow-AMSAA model, a Bayesian selective accelerated reliability growth method is proposed in this article to accelerate potential failure modes and aggregate component testing results and prior knowledge for predicting system reliability growth and corrective actions. As one of the key steps, the method dynamically allocates limited resources for testing and correcting failures on all system levels. Numerical examples illustrate that the proposed integrated statistical and optimization method is effective in estimating and improving the overall reliability of a system.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1567957 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:3:p:301-320
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2019.1567957
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().