EconPapers    
Economics at your fingertips  
 

Gaussian process based optimization algorithms with input uncertainty

Haowei Wang, Jun Yuan and Szu Hui Ng

IISE Transactions, 2020, vol. 52, issue 4, 377-393

Abstract: Metamodels as cheap approximation models for expensive to evaluate functions have been commonly used in simulation optimization problems. Among various types of metamodels, the Gaussian Process (GP) model is popular for both deterministic and stochastic simulation optimization problems. However, input uncertainty is usually ignored in simulation optimization problems, and thus current GP-based optimization algorithms do not incorporate input uncertainty. This article aims to refine the current GP-based optimization algorithms to solve the stochastic simulation optimization problems when input uncertainty is considered. The comprehensive numerical results indicate that our refined algorithms with input uncertainty can find optimal designs more efficiently than the existing algorithms when input uncertainty is present.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1639859 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:4:p:377-393

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2019.1639859

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:52:y:2020:i:4:p:377-393