EconPapers    
Economics at your fingertips  
 

In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy

Mohammad Montazeri, Abdalla R. Nassar, Alexander J. Dunbar and Prahalada Rao

IISE Transactions, 2020, vol. 52, issue 5, 500-515

Abstract: A key challenge in metal additive manufacturing is the prevalence of defects, such as discontinuities within the part (e.g., porosity). The objective of this work is to monitor porosity in Laser Powder Bed Fusion (L-PBF) additive manufacturing of nickel alloy 718 (popularly called Inconel 718) test parts using in-process optical emission spectroscopy. To realize this objective, cylinder-shaped test parts are built under different processing conditions on a commercial L-PBF machine instrumented with an in-situ multispectral photodetector sensor. Optical emission signatures are captured continuously during the build by the multispectral sensor. Following processing, the porosity-level within each layer of a test part is quantified using X-ray Computed Tomography (CT). The graph Fourier transform coefficients are derived layer-by-layer from signatures acquired from the multispectral photodetector sensor. These graph Fourier transform coefficients are subsequently invoked as input features within various machine learning models to predict the percentage porosity-level in each layer with CT data taken as ground truth. This approach is found to predict the porosity on a layer-by-layer basis with an accuracy of ∼90% (F-score) in a computation time less than 0.5 seconds. In comparison, statistical moments, such as mean, variation, etc., are less accurate (F-score ≈ 80%) and require a computation time exceeding 5 seconds.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1659525 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:5:p:500-515

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2019.1659525

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:52:y:2020:i:5:p:500-515