AKM2D: An adaptive framework for online sensing and anomaly quantification
Hao Yan,
Kamran Paynabar and
Jianjun Shi
IISE Transactions, 2020, vol. 52, issue 9, 1032-1046
Abstract:
In point-based sensing systems such as coordinate measuring machines and laser ultrasonics where complete sensing is impractical due to the high sensing time and cost, adaptive sensing through a systematic exploration is vital for online inspection and anomaly quantification. Most of the existing sequential sampling methodologies focus on reducing the overall fitting error for the entire sampling space. However, in many anomaly quantification applications, the main goal is to estimate sparse anomalous regions at pixel-level accurately. In this article, we develop a novel framework named Adaptive Kernelized Maximum-Minimum Distance (AKM2D) to speed up the inspection and anomaly detection process through an intelligent sequential sampling scheme integrated with fast estimation and detection. The proposed method balances the sampling efforts between the space-filling sampling (exploration) and focused sampling near the anomalous region (exploitation). The proposed methodology is validated by conducting simulations and a case study of anomaly detection in composite sheets using a guided wave test.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2019.1681606 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:52:y:2020:i:9:p:1032-1046
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2019.1681606
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().