EconPapers    
Economics at your fingertips  
 

Optimal pricing policies for tandem queues: Asymptotic optimality

Tonghoon Suk and Xinchang Wang

IISE Transactions, 2020, vol. 53, issue 2, 199-220

Abstract: We study the optimal pricing problem for a tandem queueing system with an arbitrary number of stations, finite buffers, and blocking. The problem is formulated using a Markov decision process model with the objective to maximize the long-run expected time-average revenue or gain of the service provider. Our interest lies in comparing the performances of static and dynamic pricing policies in maximizing the gain. We show that the optimal static pricing policies perform as well as the optimal dynamic pricing policies when the buffer size at station 1 becomes large and the arrival rate is either small or large. More importantly, we propose two specific static pricing policies for systems with small and large arrival rates, respectively, and show that each proposed policy produces a gain converging to the optimal gain with an approximately exponential rate as the buffer size before station 1 becomes large. We learn from numerical results that the proposed static policies perform as well as optimal dynamic policies even for a moderate-sized buffer at station 1. We also learn that there exist cases where optimal static pricing policies are, however, neither optimal nor near-optimal.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1783471 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2020:i:2:p:199-220

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2020.1783471

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:53:y:2020:i:2:p:199-220