EconPapers    
Economics at your fingertips  
 

Solving Bayesian risk optimization via nested stochastic gradient estimation

Sait Cakmak, Di Wu and Enlu Zhou

IISE Transactions, 2021, vol. 53, issue 10, 1081-1093

Abstract: In this article, we aim to solve Bayesian Risk Optimization (BRO), which is a recently proposed framework that formulates simulation optimization under input uncertainty. In order to efficiently solve the BRO problem, we derive nested stochastic gradient estimators and propose corresponding stochastic approximation algorithms. We show that our gradient estimators are asymptotically unbiased and consistent, and that the algorithms converge asymptotically. We demonstrate the empirical performance of the algorithms on a two-sided market model. Our estimators are of independent interest in extending the literature of stochastic gradient estimation to the case of nested risk measures.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1869352 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:10:p:1081-1093

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2020.1869352

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:53:y:2021:i:10:p:1081-1093