An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing
Chenang Liu,
Zhenyu (James) Kong,
Suresh Babu,
Chase Joslin and
James Ferguson
IISE Transactions, 2021, vol. 53, issue 11, 1215-1230
Abstract:
As an effective dimension reduction and feature extraction technique, manifold learning has been successfully applied to high-dimensional data analysis. With the rapid development of sensor technology, a large amount of high-dimensional data such as image streams can be easily available. Thus, a promising application of manifold learning is in the field of sensor signal analysis, particular for the applications of online process monitoring and control using high-dimensional data. The objective of this study is to develop a manifold learning-based feature extraction method for process monitoring of Additive Manufacturing (AM) using online sensor data. Due to the non-parametric nature of most existing manifold learning methods, their performance in terms of computational efficiency, as well as noise resistance has yet to be improved. To address this issue, this study proposes an integrated manifold learning approach termed multi-kernel metric learning embedded isometric feature mapping (MKML-ISOMAP) for dimension reduction and feature extraction of online high-dimensional sensor data such as images. Based on the extracted features with the utilization of supervised classification and regression methods, an online process monitoring methodology for AM is implemented to identify the actual process quality status. In the numerical simulation and real-world case studies, the proposed method demonstrates excellent performance in both prediction accuracy and computational efficiency.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1849876 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:11:p:1215-1230
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2020.1849876
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().