A distributionally robust optimization approach for coordinating clinical and surgical appointments
Ankit Bansal,
Bjorn Berg and
Yu-Li Huang
IISE Transactions, 2021, vol. 53, issue 12, 1311-1323
Abstract:
In this article, we address a two-stage scheduling problem that requires coordination between clinical and surgical appointments for specialized surgeries. First, patients have a clinical appointment with a surgeon to determine whether they are an appropriate candidate for the surgical procedure. Subsequently, if the decision to pursue the surgery is made the patient undergoes the procedure on a later date. However, the scheduling process aims to book both the clinical and surgical appointments for a patient at the time of the initial appointment request. Two sources of uncertainty make this scheduling process challenging: (i) the patient may or may not need surgery after the clinical appointment and (ii) the surgery duration for each patient and procedure is unknown. We present a Distributionally Robust Optimization (DRO) approach for coordinating clinical and surgical appointments under these uncertainties. A case study of the Transcatheter Aortic Valve Replacement procedure at Mayo Clinic, Rochester, MN is presented. Numerical results include comparisons with the current practice and four heuristic scheduling policies from the literature. Results show that the DRO-based scheduling policies lead to lower total surgeon idle-time and overtime per day. The proposed policies also restrict the under and over utilization of clinical capacity.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.1906467 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:12:p:1311-1323
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.1906467
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().