Modeling and monitoring unweighted networks with directed interactions
Junjie Wang and
Min Xie
IISE Transactions, 2021, vol. 53, issue 1, 116-130
Abstract:
Networks have been widely employed to represent interactive relationships among individual units in complex systems such as the Internet of Things. Assignable causes in systems can lead to abrupt increased or decreased frequency of communications within the corresponding network, which allows us to detect such assignable causes by monitoring the communication level of the network. However, existing statistical process control methods for unweighted networks have scarcely incorporated either the network sparsity or the direction of interactions between two network nodes, i.e., dyadic interaction. Regarding this, we establish a matrix-form model to characterize directional dyadic interactions in time-independent unweighted networks. With inactive dyadic interactions excluded, the proposed procedure of parameter estimation achieves higher consistency with less computational cost than its alternative when networks are large-scale and sparse. Using the generalized likelihood ratio test, the work derives two schemes for monitoring directed unweighted networks. The first can be used in general cases whereas the second incorporates a priori shift information to improve change detection efficiency in some cases and estimate the location of a single shifted parameter. Simulation study and a real application are provided to demonstrate the advantages and effectiveness of proposed schemes.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1762141 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:1:p:116-130
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2020.1762141
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().