EconPapers    
Economics at your fingertips  
 

Machine tools with hidden defects: Optimal usage for maximum lifetime value

Alp Akcay, Engin Topan and Geert-Jan van Houtum

IISE Transactions, 2021, vol. 53, issue 1, 74-87

Abstract: We consider randomly failing high-precision machine tools in a discrete manufacturing setting. Before a tool fails, it goes through a defective phase where it can continue processing new products. However, the products processed by a defective tool do not necessarily generate the same reward obtained from the ones processed by a normal tool. The defective phase of the tool is not visible and can only be detected by a costly inspection. The tool can be retired from production to avoid a tool failure and save its salvage value; however, doing so too early causes not fully using the production potential of the tool. We build a Markov decision model and study when it is the right moment to inspect or retire a tool with the objective of maximizing the total expected reward obtained from an individual tool. The structure of the optimal policy is characterized. The implementation of our model by using the real-world maintenance logs at the Philips shaver factory shows that the value of the optimal policy can be substantial compared to the policy currently used in practice.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1739786 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:1:p:74-87

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2020.1739786

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:53:y:2021:i:1:p:74-87