EconPapers    
Economics at your fingertips  
 

Multi-sensor prognostics modeling for applications with highly incomplete signals

Xiaolei Fang, Hao Yan, Nagi Gebraeel and Kamran Paynabar

IISE Transactions, 2021, vol. 53, issue 5, 597-613

Abstract: Multi-stream degradation signals have been widely used to predict the residual useful lifetime of partially degraded systems. To achieve this goal, most of the existing prognostics models assume that degradation signals are complete, i.e., they are observed continuously and frequently at regular time grids. In reality, however, degradation signals are often (highly) incomplete, i.e., containing missing and corrupt observations. Such signal incompleteness poses a significant challenge for the parameter estimation of prognostics models. To address this challenge, this article proposes a prognostics methodology that is capable of using highly incomplete multi-stream degradation signals to predict the residual useful lifetime of partially degraded systems. The method first employs multivariate functional principal components analysis to fuse multi-stream signals. Next, the fused features are regressed against time-to-failure using (log)-location-scale regression. To estimate the fused features using incomplete multi-stream degradation signals, we develop two computationally efficient algorithms: subspace detection and signal recovery. The performance of the proposed prognostics methodology is evaluated using simulated datasets and a degradation dataset of aircraft turbofan engines from the NASA repository.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1789779 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:5:p:597-613

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2020.1789779

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:53:y:2021:i:5:p:597-613