Multi-sensor prognostics modeling for applications with highly incomplete signals
Xiaolei Fang,
Hao Yan,
Nagi Gebraeel and
Kamran Paynabar
IISE Transactions, 2021, vol. 53, issue 5, 597-613
Abstract:
Multi-stream degradation signals have been widely used to predict the residual useful lifetime of partially degraded systems. To achieve this goal, most of the existing prognostics models assume that degradation signals are complete, i.e., they are observed continuously and frequently at regular time grids. In reality, however, degradation signals are often (highly) incomplete, i.e., containing missing and corrupt observations. Such signal incompleteness poses a significant challenge for the parameter estimation of prognostics models. To address this challenge, this article proposes a prognostics methodology that is capable of using highly incomplete multi-stream degradation signals to predict the residual useful lifetime of partially degraded systems. The method first employs multivariate functional principal components analysis to fuse multi-stream signals. Next, the fused features are regressed against time-to-failure using (log)-location-scale regression. To estimate the fused features using incomplete multi-stream degradation signals, we develop two computationally efficient algorithms: subspace detection and signal recovery. The performance of the proposed prognostics methodology is evaluated using simulated datasets and a degradation dataset of aircraft turbofan engines from the NASA repository.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1789779 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:5:p:597-613
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2020.1789779
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().