Modeling multivariate profiles using Gaussian process-controlled B-splines
Mithun Ghosh,
Yongxiang Li,
Li Zeng,
Zijun Zhang and
Qiang Zhou
IISE Transactions, 2021, vol. 53, issue 7, 787-798
Abstract:
Due to the increasing presence of profile data in manufacturing, profile monitoring has become one of the most popular research directions in statistical process control. The core of profile monitoring is how to model the profile data. Most of the current methods deal with univariate profile modeling where only within-profile correlation is considered. In this article, a linear mixed-effect model framework is adopted for dealing with multivariate profiles, having both within- and between-profile correlations. For better flexibility yet reduced computational cost, we propose to construct the random component of the linear mixed effects model using B-splines, whose control points are governed by a multivariate Gaussian process. Extensive simulations have been conducted to compare the model with classic models. In the case study, the proposed model is applied to the transmittance profiles from the low-emittance glasses.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2020.1798038 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:53:y:2021:i:7:p:787-798
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2020.1798038
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().