Discriminant subgraph learning from functional brain sensory data
Lujia Wang,
Todd J. Schwedt,
Catherine D. Chong,
Teresa Wu and
Jing Li
IISE Transactions, 2022, vol. 54, issue 11, 1084-1097
Abstract:
The human brain is a complex system with many functional units interacting with each other. This interacting relationship, known as the Functional Connectivity Network (FCN), is critical for brain functions. To learn the FCN, machine learning algorithms can be built based on brain signals captured by sensing technologies such as EEG and fMRI. In neurological diseases, past research has revealed that the FCN is altered. Also, focusing on a specific disease, some part of the FCN, i.e., a sub-network can be more susceptible than other parts. However, the current knowledge about disease-specific sub-networks is limited. We propose a novel Discriminant Subgraph Learner (DSL) to identify a functional sub-network that best differentiates patients with a specific disease from healthy controls based on brain sensory data. We develop an integrated optimization framework for DSL to simultaneously learn the FCN of each class and identify the discriminant sub-network. Further, we develop tractable and converging algorithms to solve the optimization. We apply DSL to identify a functional sub-network that best differentiates patients with episodic migraine from healthy controls based on a fMRI dataset. DSL achieved the best accuracy compared to five state-of-the-art competing algorithms.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.1987592 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:54:y:2022:i:11:p:1084-1097
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.1987592
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().