Two-dimensional variable selection and its applications in the diagnostics of product quality defects
Cheoljoon Jeong and
Xiaolei Fang
IISE Transactions, 2022, vol. 54, issue 7, 619-629
Abstract:
The root cause diagnostics of product quality defects in multistage manufacturing processes often requires a joint identification of crucial stages and process variables. To meet this requirement, this article proposes a novel penalized matrix regression methodology for two-dimensional variable selection. The method regresses a scalar response variable against a matrix-based predictor using a generalized linear model. The unknown regression coefficient matrix is decomposed as a product of two factor matrices. The rows of the first factor matrix and the columns of the second factor matrix are simultaneously penalized to inspire sparsity. To estimate the parameters, we develop a Block Coordinate Proximal Descent (BCPD) optimization algorithm, which cyclically solves two convex sub-optimization problems. We have proved that the BCPD algorithm always converges to a critical point with any initialization. In addition, we have also proved that each of the sub-optimization problems has a closed-form solution if the response variable follows a distribution whose (negative) log-likelihood function has a Lipschitz continuous gradient. A simulation study and a dataset from a real-world application are used to validate the effectiveness of the proposed method.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.1904524 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:54:y:2022:i:7:p:619-629
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.1904524
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().