Meta-modeling of heterogeneous data streams: A dual-network approach for online personalized fault prognostics of equipment
Hongtao Yu and
Zhongsheng Hua
IISE Transactions, 2022, vol. 54, issue 7, 672-685
Abstract:
In fault prognosis, the individual heterogeneity among degradation processes of equipment is a critical problem that decreases the reliability and stability of prognostic models. The presence of the diversity of degradation mechanisms, along with the complex temporal nature of multivariate measurements of equipment, make the existing approaches difficult to forecast the trend of health status and predict the Remaining Useful Life (RUL) of equipment. To resolve this problem, this article proposes a dual-network approach for online RUL prediction. The proposed approach predicts the RUL by constructing a recurrent neural network (RNN) and a Feedforward Neural Network (FNN) from the degradation measurements and failure occurrence data of equipment. The RNN is used to predict the evolution of degradation measurements, whereas the FNN is used to determine the failure occurrence based on the predicted measurements. Considering the individual heterogeneity problem, a novel meta-learning procedure is proposed for network training. The main idea of the meta-learning approach is to train two network generators to capture the average behavior and variation of equipment degradation, and generate dual networks dynamically tailored to different equipment in the online RUL prediction process. Numerical studies on a simulation dataset and a real-world dataset are performed for performance evaluation.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.1918804 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:54:y:2022:i:7:p:672-685
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.1918804
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().