Prediction of highly imbalanced semiconductor chip-level defects using uncertainty-based adaptive margin learning
Sumin Park,
Keunseo Kim and
Heeyoung Kim
IISE Transactions, 2022, vol. 55, issue 2, 147-155
Abstract:
In semiconductor manufacturing, the package test is a process that verifies whether the product specifications are satisfied before the semiconductor products are finally shipped to customers. The packaged chips are classified as good or defective according to the verification results. To ensure high-quality products and customer satisfaction, it is important to detect defective chips during the package test. In this article, we consider the problem of predicting potential defects in advance using the wafer-test results data obtained from an earlier stage of the wafer test. There are several challenges in this problem. First, package-test data are highly class-imbalanced with a very low defect rate, and the imbalance level may vary due to the variability in manufacturing processes. Second, there is a complex relationship between package- and wafer-test results. Third, it is more important to increase the detection accuracy of defects than the overall classification accuracy. To address these challenges, we propose a Bayesian-neural-network-based prediction model. The proposed model adaptively considers unknown imbalance levels through the flexible adjustment of the decision boundary by using class- and sample-level prediction uncertainties and the relative frequency of each class. Using a real semiconductor manufacturing dataset from a global semiconductor company, we demonstrate that the proposed model can effectively predict defects even when the imbalance level of the test dataset differs from that of the training dataset.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.2018528 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:55:y:2022:i:2:p:147-155
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.2018528
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().