Modeling and monitoring of a multivariate spatio-temporal network system
Di Wang,
Fangyu Li and
Kaibo Liu
IISE Transactions, 2023, vol. 55, issue 4, 331-347
Abstract:
With the development of information technology, various network systems are created to connect physical objects and people by sensor nodes or smart devices, providing unprecedented opportunities to realize automated interconnected systems and revolutionize people’s lives. However, network systems are vulnerable to attacks, due to the integration of physical objects and human behaviors as well as the complex spatio-temporal correlated structures of the network systems. Therefore, how to accurately and effectively model and monitor a network system is critical to ensure information security and support system automation. To address this issue, this article develops a multivariate spatio-temporal modeling and monitoring methodology for a network system by using multiple types of sensor signals collected from the network system. We first propose a Multivariate Spatio-Temporal Autoregressive (MSTA) model by integrating a Gaussian Markov Random Field and a vector autoregressive model structure to characterize the spatio-temporal correlation of the network system. In particular, we develop an iterative model learning algorithm that integrates the Bayesian inference, least squares, and a sum square error-based optimization method to learn the network structure and estimate parameters in the MSTA model. Then, we propose two spatio-temporal control schemes to monitor the network system based on the MSTA model. Numerical experiments and a real case study of an IoT network system are presented to validate the performance of the proposed method.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2021.1973157 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:55:y:2023:i:4:p:331-347
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2021.1973157
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().