EconPapers    
Economics at your fingertips  
 

A stochastic programming model for jointly optimizing maintenance and spare parts inventory for IoT applications

Jiachen Shi, Heraldo Rozas, Murat Yildirim and Nagi Gebraeel

IISE Transactions, 2023, vol. 55, issue 4, 419-431

Abstract: Service supply chain models typically use conservative maintenance and spare part management policies that result in significant losses due to redundancies. Conservatism without an improved understanding of risks, however, does not cushion against unexpected consequences. Risk scenarios associated with asset failure and inventory shortage are frequently observed in practice. Advances in Internet of Things (IoT) technology is unlocking new methods that attain significant prediction accuracy for these risk factors. IoT-enabled predictions on asset state of health can drive dynamic decision models that conduct maintenance and replenishment actions more efficiently while reducing risk. In this study, we propose a unified framework that utilizes IoT data to jointly optimize condition-based maintenance and inventory decisions. We formulate our problem as a stochastic mixed-integer program that accounts for the interplay between maintenance, spare parts inventory, and asset reliability. We introduce a new reformulation that is efficient for solving large-scale instances of the proposed model. The framework presented herein is applied to real world degradation data to demonstrate the benefits of our methodology in terms of cost and reliability.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2022.2127164 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:55:y:2023:i:4:p:419-431

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2022.2127164

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:55:y:2023:i:4:p:419-431