Online directed-structural change-point detection: A segment-wise time-varying dynamic Bayesian network approach
Xing Yang and
Chen Zhang
IISE Transactions, 2024, vol. 56, issue 5, 527-540
Abstract:
High-dimensional data streams exist in many applications. Generally these high-dimensional streaming data have complex directed conditional dependence relationships evolving over time. However, modeling their directed conditional dependence structure and detecting its change over time in an online way has not been well studied in the current literature. To that end, we propose an ONline Segment-wise tiMe-varying dynAmic Bayesian netwoRk model with exTernal information (ONSMART), together with an online score-based inferring algorithm for directed-structural change-point detection in high-dimensional data. ONSMART adopts a linear vector autoregressive (VAR) model to describe directed inter-slice and intra-slice relations of variables. It further takes additional information about similarities of variables into account and regularizes similar variables to have similar structure positions in the network with graph Laplacian. ONSMART allows the parameters of VAR to change segment-wisely over time to describe the evolution of the conditional dependence structure and adopts a customized pruned exact linear time algorithm framework to identify directed-structural change-point detection. The L-BFGS-B approach is embedded in this framework to obtain the optimal dependence structure for each segment. Numerical studies using synthetic data and real data from a three-phase flow system are performed to verify the effectiveness of ONSMART.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2023.2207252 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:56:y:2024:i:5:p:527-540
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2023.2207252
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().