EconPapers    
Economics at your fingertips  
 

Active defect discovery: A human-in-the-loop learning method

Bo Shen and Zhenyu (James) Kong

IISE Transactions, 2024, vol. 56, issue 6, 638-651

Abstract: Unsupervised defect detection methods are applied to an unlabeled dataset by producing a ranked list based on defect scores. Unfortunately, many of the top-ranked instances by unsupervised algorithms are not defects, which leads to high false-positive rates. Active Defect Discovery (ADD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information (defects or not). However, labeling is often costly. Therefore, balancing detection accuracy and labeling cost is essential. Along this line, this article proposes a novel ADD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised defect detection method, namely, Isolation Forest, as the baseline defect detector to extract features. Thereafter, the sparsity of the extracted features is utilized to adjust the defect detector so that it can focus on more important features for defect detection. To enforce the sparsity of the features and subsequent improvement of the detection accuracy, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Defect Discovery (SALDD), is proposed with its theoretical Regret analysis. Extensive experiments are conducted on real-world datasets including healthcare, manufacturing, security, etc. The performance demonstrates that the proposed algorithm significantly outperforms the state-of-the-art algorithms for defect detection.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2023.2224854 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:56:y:2024:i:6:p:638-651

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2023.2224854

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:56:y:2024:i:6:p:638-651