Fast algorithm for predicting the production process performance in flexible production lines with delayed differentiation
Jingchuan Chen and
Zuo-Jun Max Shen
IISE Transactions, 2024, vol. 56, issue 9, 932-944
Abstract:
In flexible manufacturing lines with delayed differentiation, the production process may fluctuate sharply when a control action is performed. As a result, the steady-state analysis algorithm is inaccurate for these production lines, and transient behavior studies have become crucial. However, dynamic analysis remains unexplored compared with the well-established theoretical system of steady-state analysis. Therefore, in this study, we propose a fast algorithm for predicting the production process performance in the delayed differentiation-based flexible production line under operation control. We first formulate practical problems existing in the auto, food, and furniture industries into a mathematical formation. Then, we offer closed-form formulae for predicting the production process performance using the built stochastic model in the production line with three machines. We also propose an algorithm to predict the performance of a production line having more than three machines. The proposed methods were verified to be highly accurate through comparison experiments. In terms of theoretical contributions, this study offers a research foundation for other transient-based studies. From a practical perspective, the proposed algorithms can be employed to predict the production process performance of processing lines under production control in advance.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2022.2126564 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:56:y:2024:i:9:p:932-944
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2022.2126564
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().