Sensitivity versus size: implications for tax competition
David Agrawal,
Adib Bagh () and
Mohammed Mardan ()
Additional contact information
Adib Bagh: Departments of Economics and Mathematics, University of Kentucky
Mohammed Mardan: Department of Business and Management Science, Norwegian School of Economics (NHH)
Theoretical Economics, Forthcoming
Abstract:
The conventional wisdom is that a big jurisdiction sets a higher tax rate than a small jurisdiction. We show this result arises due to simplifying assumptions that imply tax-base sensitivities are equal across jurisdictions. When more than two jurisdictions compete in commodity taxes, tax-base sensitivities need not be equal across jurisdictions and a small jurisdiction can set a higher tax rate than a big jurisdiction. Our analysis extends to capital and profit taxes, and, more generally, to various types of multi-player asymmetric competition.
Keywords: Ramsey rule; inverse elasticity; fiscal competition; optimal taxation; spatial price competition; sales tax (search for similar items in EconPapers)
JEL-codes: C7 D4 H2 H7 L1 R5 (search for similar items in EconPapers)
Date: 2025-01-28
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/5338/41147/1 Working paper version. Paper will be copyedited and typeset before publication. (application/pdf)
Related works:
Working Paper: Sensitivity Versus Size: Implications for Tax Competition (2025) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:the:publsh:5338
Access Statistics for this article
Theoretical Economics is currently edited by Federico Echenique, Mira Frick, Pablo Kurlat, Juuso Toikka, Rakesh Vohra
More articles in Theoretical Economics from Econometric Society
Bibliographic data for series maintained by Martin J. Osborne ().