Robust data-driven inference in the regression-discontinuity design
Sebastian Calonico,
Matias Cattaneo and
Rocio Titiunik
Stata Journal, 2014, vol. 14, issue 4, 909-946
Abstract:
In this article, we introduce three commands to conduct robust datadriven statistical inference in regression-discontinuity (RD) designs. First, we present rdrobust, a command that implements the robust bias-corrected confidence intervals proposed in Calonico, Cattaneo, and Titiunik (2014d, Econometrica 82: 2295–2326) for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. This command also implements other conventional nonparametric RD treatment-effect point estimators and confidence intervals. Second, we describe the companion command rdbwselect, which implements several bandwidth selectors proposed in the RD literature. Following the results in Calonico, Cattaneo, and Titiunik (2014a, Working paper, University of Michigan), we also introduce rdplot, a command that implements several data-driven choices of the number of bins in evenly spaced and quantile-spaced partitions that are used to construct the RD plots usually encountered in empirical applications. A companion R package is described in Calonico, Cattaneo, and Titiunik (2014b, Working paper, University of Michigan). Copyright 2014 by StataCorp LP.
Keywords: rdrobust; rdbwselect; rdplot; regression discontinuity (RD); sharp RD; sharp kink RD; fuzzy RD; fuzzy kink RD; treatment effects; local polynomials; bias correction; bandwidth selection; RD plots (search for similar items in EconPapers)
Date: 2014
Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj14-4/st0366/
References: Add references at CitEc
Citations: View citations in EconPapers (269)
Downloads: (external link)
http://www.stata-journal.com/article.html?article=st0366 link to article purchase
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tsj:stataj:v:14:y:2014:i:4:p:909-946
Ordering information: This journal article can be ordered from
http://www.stata-journal.com/subscription.html
Access Statistics for this article
Stata Journal is currently edited by Nicholas J. Cox and Stephen P. Jenkins
More articles in Stata Journal from StataCorp LLC
Bibliographic data for series maintained by Christopher F. Baum () and Lisa Gilmore ().