Economics at your fingertips  

Fast and wild: Bootstrap inference in Stata using boottest

David Roodman, James MacKinnon, Morten Nielsen and Matthew Webb

Stata Journal, 2019, vol. 19, issue 1, 4-60

Abstract: The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like boot- strap methods in general, the wild bootstrap is especially useful when conventional inference methods are unreliable because large-sample assumptions do not hold. For example, there may be few clusters, few treated clusters, or weak instruments. The package boottest can perform a wide variety of wild bootstrap tests, often at remarkable speed. It can also invert these tests to construct confidence sets. As a postestimation command, boottest works after linear estimation commands, in- cluding regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest can also perform the ordinary (non- clustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and Anderson–Rubin tests, optionally with (multiway) clustering. We review the main ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to computational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and present several empirical examples.

Keywords: boottest; artest; waldtest; scoretest; Anderson–Rubin test; Wald test; wild bootstrap; wild cluster bootstrap; score bootstrap; multiway clustering; few treated clusters (search for similar items in EconPapers)
Date: 2019
Note: to access software from within Stata, net describe
References: Add references at CitEc
Citations: View citations in EconPapers (314) Track citations by RSS feed

Downloads: (external link)

Related works:
Working Paper: Fast and Wild: Bootstrap Inference in Stata Using boottest (2018) Downloads
Working Paper: Fast And Wild: Bootstrap Inference In Stata Using Boottest (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1177/1536867X19830877

Access Statistics for this article

Stata Journal is currently edited by Nicholas J. Cox and Stephen P. Jenkins

More articles in Stata Journal from StataCorp LP
Bibliographic data for series maintained by Christopher F. Baum () and Lisa Gilmore ().

Page updated 2023-05-18
Handle: RePEc:tsj:stataj:v:19:y:2019:i:1:p:4-60