The fayherriot command for estimating small-area indicators
Christoph Halbmeier (),
Ann-Kristin Kreutzmann (),
Timo Schmid () and
Carsten Schröder
Additional contact information
Christoph Halbmeier: Freie Universität Berlin
Ann-Kristin Kreutzmann: Freie Universität Berlin
Timo Schmid: Freie Universität Berlin
Stata Journal, 2019, vol. 19, issue 3, 626-644
Abstract:
We introduce a command, fayherriot, that implements the Fay–Herriot model (Fay and Herriot, 1979, Journal of the American Statistical Association 74: 269–277), which is a small-area estimation technique (Rao and Molina, 2015, Small Area Estimation), in Stata. The Fay–Herriot model improves the precision of area-level direct estimates using area-level covariates. It belongs to the class of linear mixed models with normally distributed error terms. The fayherriot command encompasses options to a) produce out-of-sample predic- tions, b) adjust nonpositive random-effects variance estimates, and c) deal with the violation of model assumptions.
Keywords: fayherriot; disaggregated indicators; small-area estimation; (log-transformed) Fay–Herriot model; empirical best linear unbiased predictor (search for similar items in EconPapers)
Date: 2019
Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj19-3/st0570/
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.stata-journal.com/article.html?article=st0570 link to article purchase
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tsj:stataj:v:19:y:2019:i:3:p:626-644
Ordering information: This journal article can be ordered from
http://www.stata-journal.com/subscription.html
DOI: 10.1177/1536867X19874238
Access Statistics for this article
Stata Journal is currently edited by Nicholas J. Cox and Stephen P. Jenkins
More articles in Stata Journal from StataCorp LLC
Bibliographic data for series maintained by Christopher F. Baum () and Lisa Gilmore ().