EconPapers    
Economics at your fingertips  
 

Energy efficiency solutions for driers used in the glass manufacturing and processing industry

Pătrașcu Roxana (), Minciuc Eduard (), Darie George, Voronca Ștefan-Dominic and Bădicu Andreea-Ioana
Additional contact information
Pătrașcu Roxana: Universitatea POLITEHNICA București, Bucharest, Romania
Minciuc Eduard: Universitatea POLITEHNICA București, Bucharest, Romania
Darie George: Universitatea POLITEHNICA București, Bucharest, Romania
Voronca Ștefan-Dominic: Universitatea POLITEHNICA București, Bucharest, Romania
Bădicu Andreea-Ioana: Universitatea POLITEHNICA București, Bucharest, Romania

Proceedings of the International Conference on Business Excellence, 2017, vol. 11, issue 1, 199-208

Abstract: Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

Keywords: energy efficiency; heat recovery; glass industry; drier; energy audit (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/picbe-2017-0021 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:poicbe:v:11:y:2017:i:1:p:199-208:n:21

DOI: 10.1515/picbe-2017-0021

Access Statistics for this article

Proceedings of the International Conference on Business Excellence is currently edited by Alina Mihaela Dima

More articles in Proceedings of the International Conference on Business Excellence from Sciendo
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:199-208:n:21