EconPapers    
Economics at your fingertips  
 

Human talent forecasting

Nedelcu Bogdan ()
Additional contact information
Nedelcu Bogdan: University Politehnica of Bucharest, Bucharest, Romania

Proceedings of the International Conference on Business Excellence, 2017, vol. 11, issue 1, 437-447

Abstract: The demand for talent has increased while the offer has declined and these worrying trends don’t seem to show any sign of change in the near future. According to Bloomberg Businessweek, USA, Canada, UK, and Japan (among many others) will face varying degrees of talent shortages in almost every industry in the coming years. The performed study focuses on identifying patterns which relates to human skills. Recently, with the new demand and increasing visibility, human resources are seeking a more strategic role by harnessing data mining methods. This can be achieved by discovering generated patterns from existing useful data in HR databases. The main objective of the paper is to determine which data mining algorithm suits best for extracting knowledge from human resource data, when in it comes to determining how suited is a candidate for a specific job. First of all, it must be determined a way to evaluate a candidate as objective as possible and rate the candidate with a mark from 0 to 10. To do so, some data sets had to be generated with different numbers of values or different values and wore processed using Weka. The results had been plotted so that it would be easier to interpret. Also, the study shows the importance of using large volumes of data in order to take informed decisions has recently become extremely discussed in most organizations. While finances, marketing and other departments within a company receive data systems and customized analysis, human resources are still not supported by expert systems to process large data volumes. The software prototype designed for the experiment rates individuals (working for the company, or in trials) on a scale from 0 to 10, offering the decision makers an objective analysis. This way, a company looking for talent will know whether the person applying for the job is suited or not, and how much the hiring will influence the overall rating of the department.

Keywords: human resources; talent management; data mining; big data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/picbe-2017-0047 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:poicbe:v:11:y:2017:i:1:p:437-447:n:47

DOI: 10.1515/picbe-2017-0047

Access Statistics for this article

Proceedings of the International Conference on Business Excellence is currently edited by Alina Mihaela Dima

More articles in Proceedings of the International Conference on Business Excellence from Sciendo
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:437-447:n:47