Robust Estimation and Outlier Detection for Overdispersed Multinomial Models of Count Data
Walter R. Mebane and
Jasjeet S. Sekhon
American Journal of Political Science, 2004, vol. 48, issue 2, 392-411
Abstract:
We develop a robust estimator—the hyperbolic tangent (tanh) estimator—for overdispersed multinomial regression models of count data. The tanh estimator provides accurate estimates and reliable inferences even when the specified model is not good for as much as half of the data. Seriously ill‐fitted counts—outliers—are identified as part of the estimation. A Monte Carlo sampling experiment shows that the tanh estimator produces good results at practical sample sizes even when ten percent of the data are generated by a significantly different process. The experiment shows that, with contaminated data, estimation fails using four other estimators: the nonrobust maximum likelihood estimator, the additive logistic model and two SUR models. Using the tanh estimator to analyze data from Florida for the 2000 presidential election matches well‐known features of the election that the other four estimators fail to capture. In an analysis of data from the 1993 Polish parliamentary election, the tanh estimator gives sharper inferences than does a previously proposed heteroskedastic SUR model.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/j.0092-5853.2004.00077.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:amposc:v:48:y:2004:i:2:p:392-411
Access Statistics for this article
More articles in American Journal of Political Science from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().