A Scaling Model for Estimating Time‐Series Party Positions from Texts
Jonathan B. Slapin and
Sven‐Oliver Proksch
American Journal of Political Science, 2008, vol. 52, issue 3, 705-722
Abstract:
Recent advances in computational content analysis have provided scholars promising new ways for estimating party positions. However, existing text‐based methods face challenges in producing valid and reliable time‐series data. This article proposes a scaling algorithm called WORDFISH to estimate policy positions based on word frequencies in texts. The technique allows researchers to locate parties in one or multiple elections. We demonstrate the algorithm by estimating the positions of German political parties from 1990 to 2005 using word frequencies in party manifestos. The extracted positions reflect changes in the party system more accurately than existing time‐series estimates. In addition, the method allows researchers to examine which words are important for placing parties on the left and on the right. We find that words with strong political connotations are the best discriminators between parties. Finally, a series of robustness checks demonstrate that the estimated positions are insensitive to distributional assumptions and document selection.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (51)
Downloads: (external link)
https://doi.org/10.1111/j.1540-5907.2008.00338.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:amposc:v:52:y:2008:i:3:p:705-722
Access Statistics for this article
More articles in American Journal of Political Science from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().