The Balance‐Sample Size Frontier in Matching Methods for Causal Inference
Gary King,
Christopher Lucas and
Richard A. Nielsen
American Journal of Political Science, 2017, vol. 61, issue 2, 473-489
Abstract:
We propose a simplified approach to matching for causal inference that simultaneously optimizes balance (similarity between the treated and control groups) and matched sample size. Existing approaches either fix the matched sample size and maximize balance or fix balance and maximize sample size, leaving analysts to settle for suboptimal solutions or attempt manual optimization by iteratively tweaking their matching method and rechecking balance. To jointly maximize balance and sample size, we introduce the matching frontier, the set of matching solutions with maximum possible balance for each sample size. Rather than iterating, researchers can choose matching solutions from the frontier for analysis in one step. We derive fast algorithms that calculate the matching frontier for several commonly used balance metrics. We demonstrate this approach with analyses of the effect of sex on judging and job training programs that show how the methods we introduce can extract new knowledge from existing data sets.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://doi.org/10.1111/ajps.12272
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:amposc:v:61:y:2017:i:2:p:473-489
Access Statistics for this article
More articles in American Journal of Political Science from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().