Inference for Large‐Scale Linear Systems With Known Coefficients
Zheng Fang,
Andres Santos,
Azeem Shaikh and
Alexander Torgovitsky
Econometrica, 2023, vol. 91, issue 1, 299-327
Abstract:
This paper considers the problem of testing whether there exists a non‐negative solution to a possibly under‐determined system of linear equations with known coefficients. This hypothesis testing problem arises naturally in a number of settings, including random coefficient, treatment effect, and discrete choice models, as well as a class of linear programming problems. As a first contribution, we obtain a novel geometric characterization of the null hypothesis in terms of identified parameters satisfying an infinite set of inequality restrictions. Using this characterization, we devise a test that requires solving only linear programs for its implementation, and thus remains computationally feasible in the high‐dimensional applications that motivate our analysis. The asymptotic size of the proposed test is shown to equal at most the nominal level uniformly over a large class of distributions that permits the number of linear equations to grow with the sample size.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.3982/ECTA18979
Related works:
Working Paper: Inference for Large-Scale Linear Systems with Known Coefficients (2021) 
Working Paper: Inference for Large-Scale Linear Systems with Known Coefficients (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:91:y:2023:i:1:p:299-327
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().