Nonparametric bootstrap tests for independence of generalized errors
Zaichao Du
Econometrics Journal, 2016, vol. 19, issue 1, 55-83
Abstract:
In this paper, we develop a general method of testing for independence when unobservable generalized errors are involved. Our method can be applied to testing for serial independence of generalized errors, and testing for independence between the generalized errors and observable covariates. The former can serve as a unified approach to testing the adequacy of time series models, as model adequacy often implies that the generalized errors obtained after a suitable transformation are independent and identically distributed. The latter is a key identification assumption in many nonlinear economic models. Our tests are based on a classical sample dependence measure, the Hoeffding–Blum–Kiefer–Rosenblatt‐type empirical process applied to generalized residuals. We establish a uniform expansion of the process, thereby deriving an explicit expression for the parameter estimation effect, which causes our tests not to be nuisance‐parameter‐free. To circumvent this problem, we propose a multiplier‐type bootstrap to approximate the limit distribution. Our bootstrap procedure is computationally very simple as it does not require a re‐estimation of the parameters in each bootstrap replication. Simulations and empirical applications to daily exchange rate data highlight the merits of our approach.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1111/ectj.12059
Related works:
Working Paper: Nonparametric Bootstrap Tests for Independence of Generalized Errors (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emjrnl:v:19:y:2016:i:1:p:55-83
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1368-423X
Access Statistics for this article
Econometrics Journal is currently edited by Jaap Abbring, Victor Chernozhukov, Michael Jansson and Dennis Kristensen
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().