Nonparametric Bootstrap Tests for Independence of Generalized Errors
Zaichao Du
No 2009-023, CAEPR Working Papers from Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington
Abstract:
In this paper, we develop a general method of testing for independence when unobservable generalized errors are involved. Our method can be applied to testing for serial independence of generalized errors, and testing for independence between the generalized errors and observable covariates. The former can serve as a unified approach to testing adequacy of time series models, as model adequacy often implies that the generalized errors obtained after a suitable transformation are independent and identically distributed. The latter is a key identification assumption in many nonlinear economic models. Our tests are based on a classical sample dependence measure, the Hoeffding-Blum-Kiefer-Rosenblat-type empirical process applied to generalized residuals. We establish a uniform expansion of the process, thereby deriving an explicit expression for the parameter estimation effect, which causes our tests not to be nuisance parameter-free. To circumvent this problem, we propose a multiplier-type bootstrap to approximate the limit distribution. Our bootstrap procedure is computationally very simple as it does not require a reestimation of the parameters in each bootstrap replication. In a simulation study, we apply our method to test the adequacy of ARMA-GARCH and Hansen (1994) skewed t models, and document a good finite sample performance of our test. Finally, an empirical application to some daily exchange rate data highlights the merits of our approach.
Pages: 26 pages
Date: 2009-12
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://caepr.indiana.edu/RePEc/inu/caeprp/caepr2009-023.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
Journal Article: Nonparametric bootstrap tests for independence of generalized errors (2016) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inu:caeprp:2009023
Access Statistics for this paper
More papers in CAEPR Working Papers from Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington Contact information at EDIRC.
Bibliographic data for series maintained by Center for Applied Economics and Policy Research ().