EconPapers    
Economics at your fingertips  
 

A Comprehensive Review on the Rapid Hydrate Formation for CO2 Capture: Characteristics, Mechanism, and Applications

Xuemin Zhang, Wenqiang Cui, Jiale Chen, Yetao Zhang, Jiacheng Liu, Jinping Li, Qingqing Liu, Qing Yuan and Qingbai Wu

Greenhouse Gases: Science and Technology, 2025, vol. 15, issue 2, 277-301

Abstract: CO2, being a major greenhouse gas, is regarded as an important contributor to global warming and environmental problems. CO2 capture and separation are an efficient approach for reducing CO2 emissions in the atmosphere. A hydrate method of CO2 capture and separation provides a feasible solution to the emission reduction of CO2 in the atmosphere. However, the rapid formation of hydrate is crucial for CO2 capture and separation using the hydrate technique. As a consequence, this paper comprehensively reviewed the rapid formation characteristics and the kinetic law of CO2 hydrate, as well as deeply analyzed the influences of temperature and pressure conditions, gas–liquid ratios, additives, hydration reaction system, hydration reaction process, and other factors on its formation process. On this basis, the quantitative impact and regulatory mechanisms of different factors on the nucleation and growth process of CO2 hydrate were comprehensively analyzed. The influence mechanisms and kinetic laws of temperature, pressure, gas–liquid ratio selection, additive concentration, and type of reaction system on CO2 hydrate rapid formation were detailed. The regulatory and enhancement mechanisms of CO2 hydrate rapid formation under multiple factors were elucidated. The application of CO2 capture by the hydrate method and its challenges are summarized. In the end, the key problems and future directions of rapid CO2 capture and separation using the hydrate method were pointed out. The synergistic mechanism of rapid CO2 hydrate formation and the enhancement through multiple factors still need to be further investigated. Developing new reactor structures and optimizing the hydration reaction process are important in promoting the rapid formation of CO2 hydrate.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ghg.2338

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:15:y:2025:i:2:p:277-301

Access Statistics for this article

More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-13
Handle: RePEc:wly:greenh:v:15:y:2025:i:2:p:277-301