Equilibrium solubility measurement and Kent‐Eisenberg modeling of CO 2 absorption in aqueous mixture of N‐methyldiethanolamine and hexamethylenediamine
Bikash K. Mondal,
Syamalendu S. Bandyopadhyay and
Amar N. Samanta
Greenhouse Gases: Science and Technology, 2017, vol. 7, issue 1, 202-214
Abstract:
Vapor‐liquid equilibrium of CO 2 in aqueous mixture of hexamethylenediamine (HMDA) and N‐methyldiethanolamine (MDEA) has been investigated using a stirred equilibrium cell set‐up in the temperature and pressure range of 303–333K and 1–100kPa, respectively. Composition of the mixed amine solvents used are (5mass% HMDA+25mass% MDEA), (10 mass% HMDA+20 mass% MDEA), (15mass% HMDA+15mass% MDEA), and (20 mass% HMDA+10 mass% MDEA). Equilibrium solubility data is fitted using the Kent‐Eisenberg thermodynamic model. To fit experimental solubility data with model predicted data, bicarbamate formation and zwitterion deprotonation reaction equilibrium constants of HMDA are regressed as a function of CO 2 loading and temperature. Average absolute deviation between experimental and model predicted data is found to be 7.16%. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1002/ghg.1653
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:7:y:2017:i:1:p:202-214
Access Statistics for this article
More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().