Modeling of CO 2 sequestration in coal seams: Role of CO 2 ‐induced coal softening on injectivity, storage efficiency and caprock deformation
Tianran Ma,
Jonny Rutqvist,
Weiqun Liu,
Li Zhu and
Kunhwi Kim
Greenhouse Gases: Science and Technology, 2017, vol. 7, issue 3, 562-578
Abstract:
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection‐induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow‐deformation model with a new stress‐dependent porosity and permeability model that considers CO 2 ‐induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one‐order‐of‐magnitude) decrease of Young's modulus and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. The results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 ‐induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. Overall, the study demonstrates the importance of considering the CO 2 ‐induced softening when analyzing the performance and environmental impact of CO 2 ‐sequestration operations in unminable coal seams. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1002/ghg.1664
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:7:y:2017:i:3:p:562-578
Access Statistics for this article
More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().