EconPapers    
Economics at your fingertips  
 

Lab‐scale atmospheric CO2 absorption for calcium carbonate precipitation in sand

Lock‐Hei Ngu, Joyce W. Song, Siti S. Hashim and Dominic E. Ong

Greenhouse Gases: Science and Technology, 2019, vol. 9, issue 3, 519-528

Abstract: The microbial‐induced calcite precipitation (MICP) process for ground improvement uses microorganisms to hydrolyze urea, producing carbonate ions to induce in situ calcium carbonate (CaCO3) precipitation in soil to improve its strength. This paper proposes using the hydroxide‐based absorption of CO2 instead to provide the carbonate ion source. This study utilizes direct air capture (DAC) to absorb atmospheric CO2 using potassium hydroxide (KOH) in a semi‐batch bubble absorption column. Potassium carbonate (K2CO3) was then injected into sand with calcium hydroxide (Ca(OH)2 as a calcium source to precipitate CaCO3 and regenerate KOH. Batch and continuous flow precipitation methods produced a poor distribution of CaCO3, with more CaCO3 precipitated on top, resulting in unconfined compressive strength (UCS) of 6.9 to 19.6 kPa. Sand pre‐mixed with Ca(OH)2 gave well distributed CaCO3, precipitated throughout the sample with 7.56 wt% and 6.87 wt% CaCO3 content and UCS of 39.2 and 35.3 kPa before failing for batch and continuous flow precipitation respectively. This differs from MICP strength improvement of 1000 kPa with 5.3 wt% CaCO3 due to poor binding of sand with the precipitated CaCO3 crystals. However, this application provides a stable sequestration source for atmospheric CO2 in soil. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ghg.1869

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:9:y:2019:i:3:p:519-528

Access Statistics for this article

More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:greenh:v:9:y:2019:i:3:p:519-528