APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs
Martin Feldkircher,
Florian Huber,
Gary Koop and
Michael Pfarrhofer
International Economic Review, 2022, vol. 63, issue 4, 1625-1658
Abstract:
Panel vector autoregressions (PVARs) are a popular tool for analyzing multicountry data sets. However, the number of estimated parameters can be enormous, leading to computational and statistical issues. In this article, we develop fast Bayesian methods for estimating PVARs using integrated rotated Gaussian approximations. We exploit the fact that domestic information is often more important than international information and group the coefficients accordingly. Fast approximations are used to estimate the latter whereas the former are estimated with precision using Markov chain Monte Carlo techniques. We illustrate, using a huge model of the world economy, that it produces competitive forecasts quickly.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/iere.12577
Related works:
Working Paper: Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:iecrev:v:63:y:2022:i:4:p:1625-1658
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0020-6598
Access Statistics for this article
International Economic Review is currently edited by Michael O'Riordan and Dirk Krueger
More articles in International Economic Review from Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297. Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().