TESTS OF EQUAL FORECAST ACCURACY FOR OVERLAPPING MODELS
Todd Clark and
Michael McCracken
Journal of Applied Econometrics, 2014, vol. 29, issue 3, 415-430
Abstract:
SUMMARY This paper examines the asymptotic and finite‐sample properties of tests of equal forecast accuracy when the models being compared are overlapping in the sense of Vuong (Econometrica 1989; 57 : 307–333). Two models are overlapping when the true model contains just a subset of variables common to the larger sets of variables included in the competing forecasting models. We consider an out‐of‐sample version of the two‐step testing procedure recommended by Vuong but also show that an exact one‐step procedure is sometimes applicable. When the models are overlapping, we provide a simple‐to‐use fixed‐regressor wild bootstrap that can be used to conduct valid inference. Monte Carlo simulations generally support the theoretical results: the two‐step procedure is conservative, while the one‐step procedure can be accurately sized when appropriate. We conclude with an empirical application comparing the predictive content of credit spreads to growth in real stock prices for forecasting US real gross domestic product growth. Copyright © 2013 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/
Related works:
Working Paper: Tests of equal forecast accuracy for overlapping models (2011) 
Working Paper: Tests of equal forecast accuracy for overlapping models (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:29:y:2014:i:3:p:415-430
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().