EconPapers    
Economics at your fingertips  
 

Composite likelihood methods for large Bayesian VARs with stochastic volatility

Joshua Chan, Eric Eisenstat, Chenghan Hou and Gary Koop

Journal of Applied Econometrics, 2020, vol. 35, issue 6, 692-711

Abstract: Adding multivariate stochastic volatility of a flexible form to large vector autoregressions (VARs) involving over 100 variables has proved challenging owing to computational considerations and overparametrization concerns. The existing literature works with either homoskedastic models or smaller models with restrictive forms for the stochastic volatility. In this paper, we develop composite likelihood methods for large VARs with multivariate stochastic volatility. These involve estimating large numbers of parsimonious models and then taking a weighted average across these models. We discuss various schemes for choosing the weights. In our empirical work involving VARs of up to 196 variables, we show that composite likelihood methods forecast much better than the most popular large VAR approach, which is computationally practical in very high dimensions: the homoskedastic VAR with Minnesota prior. We also compare our methods to various popular approaches that allow for stochastic volatility using medium and small VARs involving up to 20 variables. We find our methods to forecast appreciably better than these as well.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1002/jae.2793

Related works:
Working Paper: Composite likelihood methods for large Bayesian VARs with stochastic volatility (2018) Downloads
Working Paper: Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:35:y:2020:i:6:p:692-711

Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252

Access Statistics for this article

Journal of Applied Econometrics is currently edited by M. Hashem Pesaran

More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-29
Handle: RePEc:wly:japmet:v:35:y:2020:i:6:p:692-711