Composite likelihood methods for large Bayesian VARs with stochastic volatility
Joshua Chan,
Eric Eisenstat,
Chenghan Hou and
Gary Koop
Journal of Applied Econometrics, 2020, vol. 35, issue 6, 692-711
Abstract:
Adding multivariate stochastic volatility of a flexible form to large vector autoregressions (VARs) involving over 100 variables has proved challenging owing to computational considerations and overparametrization concerns. The existing literature works with either homoskedastic models or smaller models with restrictive forms for the stochastic volatility. In this paper, we develop composite likelihood methods for large VARs with multivariate stochastic volatility. These involve estimating large numbers of parsimonious models and then taking a weighted average across these models. We discuss various schemes for choosing the weights. In our empirical work involving VARs of up to 196 variables, we show that composite likelihood methods forecast much better than the most popular large VAR approach, which is computationally practical in very high dimensions: the homoskedastic VAR with Minnesota prior. We also compare our methods to various popular approaches that allow for stochastic volatility using medium and small VARs involving up to 20 variables. We find our methods to forecast appreciably better than these as well.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1002/jae.2793
Related works:
Working Paper: Composite likelihood methods for large Bayesian VARs with stochastic volatility (2018) 
Working Paper: Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:35:y:2020:i:6:p:692-711
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().