Nowcasting tail risk to economic activity at a weekly frequency
Andrea Carriero,
Todd Clark and
Massimiliano Marcellino
Journal of Applied Econometrics, 2022, vol. 37, issue 5, 843-866
Abstract:
This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly and weekly information used to produce nowcasts on a weekly basis. We consider Bayesian mixed frequency regressions with stochastic volatility and Bayesian quantile regressions. Our results show that, within some limits, more information helps the accuracy of nowcasts of tail risk to GDP growth. Accuracy typically improves as time moves forward within a quarter, making additional data available, with monthly data more important to accuracy than weekly data. Accuracy also typically improves with the use of financial indicators in addition to a base set of macroeconomic indicators.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1002/jae.2903
Related works:
Working Paper: Nowcasting Tail Risk to Economic Activity at a Weekly Frequency (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:37:y:2022:i:5:p:843-866
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().