Bayesian optimization of hyperparameters from noisy marginal likelihood estimates
Oskar Gustafsson,
Mattias Villani and
Pär Stockhammar
Journal of Applied Econometrics, 2023, vol. 38, issue 4, 577-595
Abstract:
Bayesian models often involve a small set of hyperparameters determined by maximizing the marginal likelihood. Bayesian optimization is an iterative method where a Gaussian process posterior of the underlying function is sequentially updated by new function evaluations. We propose a novel Bayesian optimization framework for situations where the user controls the computational effort and therefore the precision of the function evaluations. This is a common situation in econometrics where the marginal likelihood is often computed by Markov chain Monte Carlo or importance sampling methods. The new acquisition strategy gives the optimizer the option to explore the function with cheap noisy evaluations and therefore find the optimum faster. The method is applied to estimating the prior hyperparameters in two popular models on US macroeconomic time series data: the steady‐state Bayesian vector autoregressive (BVAR) and the time‐varying parameter BVAR with stochastic volatility.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.2961
Related works:
Working Paper: Bayesian Optimization of Hyperparameters from Noisy Marginal Likelihood Estimates (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:4:p:577-595
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().