The Taylor Rule and Forecast Intervals for Exchange Rates
Jian Wang and
Jason J. Wu
Journal of Money, Credit and Banking, 2012, vol. 44, issue 1, 103-144
Abstract:
In this paper, we examine the Meese–Rogoff puzzle from a different perspective: out‐of‐sample interval forecasting. While most studies in the literature focus on point forecasts, we apply semiparametric interval forecasting to a group of exchange rate models. Forecast intervals for 10 OECD exchange rates are generated and the performance of the empirical exchange rate models are compared with the random walk. Our contribution is twofold. First, we find that in general, exchange rate models generate tighter forecast intervals than the random walk, given that their intervals cover out‐of‐sample exchange rate realizations equally well. Our results suggest a connection between exchange rates and economic fundamentals: economic variables contain information useful in forecasting distributions of exchange rates. We also find that the benchmark Taylor rule model performs better than the monetary, PPP and forward premium models, and its advantages are more pronounced at longer horizons. Second, the bootstrap inference framework proposed in this paper for forecast interval evaluation can be applied in a broader context, such as inflation forecasting.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/j.1538-4616.2011.00470.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jmoncb:v:44:y:2012:i:1:p:103-144
Access Statistics for this article
Journal of Money, Credit and Banking is currently edited by Robert deYoung, Paul Evans, Pok-Sang Lam and Kenneth D. West
More articles in Journal of Money, Credit and Banking from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().