EconPapers    
Economics at your fingertips  
 

On the Generalized Hyers‐Ulam‐Rassias Stability of Quadratic Functional Equations

M. Eshaghi Gordji and H. Khodaei

Abstract and Applied Analysis, 2009, vol. 2009, issue 1

Abstract: We achieve the general solution and the generalized Hyers‐Ulam‐Rassias and Ulam‐Gavruta‐Rassias stabilities for quadratic functional equations f(ax + by) + f(ax − by) = (b(a + b)/2)f(x + y) + (b(a + b)/2)f(x − y) + (2a2 − ab − b2)f(x) + (b2 − ab)f(y) where a, b are nonzero fixed integers with b ≠ ±a, −3a, and f(ax + by) + f(ax − by) = 2a2f(x) + 2b2f(y) for fixed integers a, b with a, b ≠ 0 and a ± b ≠ 0.

Date: 2009
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2009/923476

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2009:y:2009:i:1:n:923476

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2009:y:2009:i:1:n:923476