On uniform asymptotic risk of averaging GMM estimators
Xu Cheng,
Zhipeng Liao and
Ruoyao Shi ()
Quantitative Economics, 2019, vol. 10, issue 3, 931-979
Abstract:
This paper studies the averaging GMM estimator that combines a conservative GMM estimator based on valid moment conditions and an aggressive GMM estimator based on both valid and possibly misspecified moment conditions, where the weight is the sample analog of an infeasible optimal weight. We establish asymptotic theory on uniform approximation of the upper and lower bounds of the finite‐sample truncated risk difference between any two estimators, which is used to compare the averaging GMM estimator and the conservative GMM estimator. Under some sufficient conditions, we show that the asymptotic lower bound of the truncated risk difference between the averaging estimator and the conservative estimator is strictly less than zero, while the asymptotic upper bound is zero uniformly over any degree of misspecification. The results apply to quadratic loss functions. This uniform asymptotic dominance is established in non‐Gaussian semiparametric nonlinear models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
https://doi.org/10.3982/QE711
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:10:y:2019:i:3:p:931-979
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().