Equilibrium computation in discrete network games
Michael Leung
Quantitative Economics, 2020, vol. 11, issue 4, 1325-1347
Abstract:
Counterfactual policy evaluation often requires computation of game‐theoretic equilibria. We provide new algorithms for computing pure‐strategy Nash equilibria of games on networks with finite action spaces. The algorithms exploit the fact that many agents may be endowed with types such that a particular action is a dominant strategy. These agents can be used to partition the network into smaller subgames whose equilibrium sets may be more feasible to compute. We provide bounds on the complexity of our algorithms for models obeying certain restrictions on the strength of strategic interactions. These restrictions are analogous to the assumption in the widely used linear‐in‐means model of social interactions that the magnitude of the endogenous peer effect is bounded below one. For these models, our algorithms have complexity Op(nc), where the randomness is with respect to the data‐generating process, n is the number of agents, and c depends on the strength of strategic interactions. We also provide algorithms for computing pairwise stable and directed Nash stable networks in network formation games.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.3982/QE1386
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:11:y:2020:i:4:p:1325-1347
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().