A consistent specification test for dynamic quantile models
Peter Horvath,
Jia Li,
Zhipeng Liao and
Andrew Patton
Quantitative Economics, 2022, vol. 13, issue 1, 125-151
Abstract:
Correct specification of a conditional quantile model implies that a particular conditional moment is equal to zero. We nonparametrically estimate the conditional moment function via series regression and test whether it is identically zero using uniform functional inference. Our approach is theoretically justified via a strong Gaussian approximation for statistics of growing dimensions in a general time series setting. We propose a novel bootstrap method in this nonstandard context and show that it significantly outperforms the benchmark asymptotic approximation in finite samples, especially for tail quantiles such as Value‐at‐Risk (VaR). We use the proposed new test to study the VaR and CoVaR (Adrian and Brunnermeier (2016)) of a collection of US financial institutions.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.3982/QE1727
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:13:y:2022:i:1:p:125-151
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().