Market counterfactuals and the specification of multiproduct demand: A nonparametric approach
Giovanni Compiani
Quantitative Economics, 2022, vol. 13, issue 2, 545-591
Abstract:
Demand estimates are essential for addressing a wide range of positive and normative questions in economics that are known to depend on the shape—and notably the curvature—of the true demand functions. The existing frontier approaches, while allowing flexible substitution patterns, typically require the researcher to commit to a parametric specification. An open question is whether these a priori restrictions are likely to significantly affect the results. To address this, I develop a nonparametric approach to estimation of demand for differentiated products, which I then apply to California supermarket data. While the approach subsumes workhorse models such as mixed logit, it allows consumer behaviors and preferences beyond standard discrete choice, including continuous choices, complementarities across goods, and consumer inattention. When considering a tax on one good, the nonparametric approach predicts a much lower pass‐through than a standard mixed logit model. However, when assessing the market power of a multiproduct firm relative to that of a single‐product firm, the models give similar results. I also illustrate how the nonparametric approach may be used to guide the choice among parametric specifications.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.3982/QE1653
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:13:y:2022:i:2:p:545-591
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().