Flexible Bayesian analysis of first price auctions using a simulated likelihood
Dong‐Hyuk Kim
Quantitative Economics, 2015, vol. 6, issue 2, 429-461
Abstract:
I propose a Bayesian method to analyze bid data from first‐price auctions under private value paradigms. I use a series representation to specify the valuation density so that bidding monotonicity is always satisfied, and I impose density affiliation by the nonparametric technique of Beresteanu (2007). This flexible method is, therefore, fully compatible with the underlying economic theory. To handle such a rich specification, I use a simulated likelihood, yet obtain a correct posterior by regarding the draws used for simulation as a latent variable to be augmented in the Bayesian framework; see Flury and Shephard, 2011. I provide a step‐by‐step guide of the method, report its performance from various perspectives, and compare the method with the existing one for a range of data generating processes and sample sizes. Finally, I analyze a bid sample for drilling rights in the outer continental shelf that has been widely studied and propose a reserve price that is decision theoretically optimal under parameter uncertainty.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:6:y:2015:i:2:p:429-461
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().